Menu
我公司是结合网络技术为废品行业服务最早,回收技术最专业的废品回收公司。公司设立在辽宁沈阳地区,从事20多年回收行业,值得信赖!

当前位置主页 > 光学 >

一文看懂asml光刻机事业道理及根基构制

日期:2019-11-28 04:38 来源: 光学

  在半导体芯片制造设备中,投资最大、也是最为关键的是光刻机,光刻机同时也是精度与难度最高、技术最为密集、进步最快的一种系统性工程设备。光学光刻技术与其它光刻技术相比,具有生产率高、成本低、易实现高的对准和套刻精度、掩模制作相对简单、工艺条件容易掌握等优点,一直是半导体芯片制造产业中的主流光刻技术。目前,国际上半导体芯片制造生产线nm(KrF)准分子激光投影光刻机,并正在向193nm(ArF)准分子激光投影光刻机过渡。荷兰ASML公司作为全球三大光刻机集成生产商之一,坚持不懈地进行技术创新以增强其竞争力,在全球光刻机销售市场上居于领先地位。

一文看懂asml光刻机事业道理及根基构制

  能量控制器:控制最终照射到硅片上的能量,曝光不足或过足都会严重影响成像质量。

  光束形状设置:设置光束为圆型、环型等不同形状,不同的光束状态有不同的光学特性。

  能量探测器:检测光束最终入射能量是否符合曝光要求,并反馈给能量控制器进行调整。

  硅片:用硅晶制成的圆片。硅片有多种尺寸,尺寸越大,产率越高。题外话,由于硅片是圆的,所以需要在硅片上剪一个缺口来确认硅片的坐标系,根据缺口的形状不同分为两种,分别叫flat、 notch。

  内部封闭框架、减振器:将工作台与外部环境隔离,保持水平,减少外界振动干扰,并维持稳定的温度、压力。

  在加工芯片的过程中,光刻机通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到硅片上,然后使用化学方法显影,得到刻在硅片上的电路图。一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、激光刻蚀等工序。经过一次光刻的芯片可以继续涂胶、曝光。越复杂的芯片,线路图的层数越多,也需要更精密的曝光控制过程。

一文看懂asml光刻机事业道理及根基构制

  准分子激光器扫描步进投影光刻机最关键的三项技术指标是:光刻分辨力(Resolu2tion)、套刻精度(Overlay)和产量(Produc2tivity)。

  式中为准分子激光器输出激光波长,K1为工艺系数因子,NA为投影光刻物镜数值孔径。从上式可以看出,提高光刻分辨力可以通过缩短激光波长、降低工艺系数因子K1和提高投影光刻物镜数值孔径NA等来实现。缩短激光波长将涉及到激光器、光学系统设计、光学材料、光学镀膜、光路污染以及曝光抗蚀剂等系列技术问题;低工艺系数因子K1值成像,只有当掩模设计、照明条件和抗蚀剂工艺等同时达到最佳化才能实现,为此需要采用离轴照明、相移掩模、光学邻近效应校正、光瞳滤波等系列技术措施;投影光刻物镜的数值孔径则与激光波长及光谱带宽、成像视场、光学设计和光学加工水平等因素有关。

  套刻精度与光刻分辨力密切相关。如果要达到0.10m的光刻分辨力,根据33%法则要求套刻精度不低于0.03m。套刻精度主要与工件台和掩模台定位精度、光学对准精度、同步扫描精度等因素有关,定位精度、对准精度和同步扫描精度分别约为套刻精度的1/5~1/3,即0.006~0.01m。提高生产效率是光刻机实现产业化的必要条件。为了提高生产效率,必须优化设计激光器输出功率、重复频率、曝光能量控制、同步扫描等各个技术环节,并采用先进技术尽量减少换片、步进和光学对准等环节所需时间。

一文看懂asml光刻机事业道理及根基构制

  光刻机的光源是核心, EUV是下一代光刻的利刃。光刻机使用的光源有几项要求:

  有适当的波长(波长越短,曝光的特征尺寸就越小),同时有足够的能量,并且均匀地分布在曝光区。

  实现光刻进步的直接方法,是降低使用光源的波长。早期的紫外光源是高压弧光灯(高压汞灯),经过滤光后使用其中的 g线 nm)或 i线 nm)。其后采用波长更短的深紫外光光源,是一种准分子激光(Excimer laser),利用电子束激发惰性气体和卤素气体结合形成的气体分子,向基态跃迁时所产生激光,特色是方向性强、波长纯度高、输出功率大,例如 KrF (248 nm)、 ArF(193 nm)和 F2(157 nm)等。使用 193nmArF光源的干法光刻机,其光刻工艺节点可达 45nm,采用浸没式与光学邻近效应矫正等技术后,其极限光刻工艺节点可达 28nm。

一文看懂asml光刻机事业道理及根基构制

  首创双工作台,大幅提升生产效率。在 2000年前光刻设备,只有一个工作台,晶圆片的对准与蚀刻流程都在上面完成。公司在 2001年推出的 Twinscan双工作台系统,是行业的一大进步,使得光刻机能在一个工作台进行曝光晶圆片,同时在另外一个工作台进行预对准工作,并在第一时间得到结果反馈,生产效率提高大约 35%,精度提高 10%以上。双工件台系统虽然仅是加一个工作台,但技术难度却不容小觑,对工作台转移速度和精度有非常高的要求。阿斯麦的独家磁悬浮工件台系统,使得系统能克服摩擦系数和阻尼系数,其加工速度和精度是超越机械式和气浮式工件台。

一文看懂asml光刻机事业道理及根基构制

  浸没式光刻与二次曝光提升工艺能力,填补 EUV问世前的演进缺口。浸没式光刻是指在镜头和硅片之间增加一层专用水或液体,光线浸没在液体中曝光在硅晶片圆上;由于液体的折射率比空气的折射率高,因此成像精度更高。从而获得更好分辨率与更小曝光尺寸。

  2002年业界提出了 193nm浸入式光刻的设备规划,由于 193nm的光谱在水中的折射率高达 1.44(折射率越高,蚀刻精度也越好),等效波长缩短为 134nm,设备厂商只需对现有设备做较小的改造,就能将蚀刻精度提升 1-2个世代。阿斯麦首先推出 193nm的浸没式设备,效果优于 157nm光源的设备,成功将 90nm制程提升到 65nm,彻底打败选择干式蚀刻路线的尼康与佳能,是行业格局的重要转折。

  到了 2010年后,制程工艺尺寸进化到 22nm,已经超越浸没式 DUV的蚀刻精度,于是行业开始导入两次图形曝光工艺,以间接方式来制作线路;即不直接曝光管线部分,而是先曝光出两侧管壁,间接形成线路区域。两次曝光虽然能制作比光源精度更高的集成电路,但副作用是光刻次数与掩模数量大增,造成成本上升及生产周期延长,所以波长更短、精度更高的光源,才是提升制程能力的关键。对于使用浸没式+两次图形曝光的 ArF光刻机,工艺节点的极限是 10nm。 EUV光刻机可望使工艺制程继续延伸到 7nm与 5nm。

一文看懂asml光刻机事业道理及根基构制

  半导体行业目前最大的瓶颈,在于摩尔定律的实现成本越来越大,制程微缩不再伴随晶体管单位成本同步下降。在从 32/28nm节点迈进 22/20nm节点时,由于光刻精度不足,需使用二次曝光等技术来实现,设备与制作成本双双提高,晶体管的单位成本首次出现不降反升。

  业界将希望寄托在极紫外光(EUV)微影技术,期望 EUV设备的高精度,能帮助厂商减少光刻的工序,提高 7nm以下的晶圆量产性。 2013年阿斯麦 EUV光刻设备研发成功,光源波长 22nm,技术逐步推进, 2017年的设备已采用最小 13nmEUV作为光源,超短波长使 7nm以下特征尺寸曝光得以实现。随着业界制程走向了 10nm以下,需要更高级的 EUV光刻系统,全球只有阿斯麦的 NXE系列能够满足需求。

一文看懂asml光刻机事业道理及根基构制

  EUV工艺聚集了多个领域的顶尖技术。 EUV要具备量产性,有几个技术瓶颈必须克服;首先在光源上。极紫外光的波长为 13.5nm,这种光容易被包括镜头玻璃内的材料吸收,所以需要使用反射镜来代替透镜;普通打磨镜面的反射率还不够高,必须使用布拉格反射器(Bragg reflector,一种复式镜面设计,可以将多层的反射集中成单一反射)。

  此外,气体也会吸收 EUV并影响折射率,所以腔体内必须采用真空系统。为了解决 EUV的光源问题,2012年 10月,阿斯麦斥资 19.5亿欧元,收购其关键的光学技术提供商 Cymer,加速极紫外光(EUV)相关技术的开发。公司 2017年的 EUV设备 NXE 3400B,成功提高光源功率与精度,实现约 13纳米的线宽,并且采用磁悬浮系统来加速掩模及工作台,预期吞吐量可达每小时 125片晶圆,微影迭对(overlays)误差容许度在 3纳米以内。

一文看懂asml光刻机事业道理及根基构制

  在以往 DUV时期,需要以多重光罩才能实现的 7nm制程,新型 EUV系统可望只要单一光罩步骤就可完成;但在 5nm或以下的制程,还会面临多次图形曝光的问题,仍需要提高下一代 EUV设备在光源以外的能力。为此,公司在 2016年以 11亿美元收购光学大厂蔡司(CarlZeiss)的 24.9%股份,并承诺 8.4亿美元的研发投入,联手研发数值孔径(numericalaperture, NA)高于 0.5的镜头。第二代 EUV微影预计要到 2024年后量产,届时计划实现约 8纳米的线片晶圆,迭对误差容许度小于 2纳米。

  阿斯麦此次大手笔投资蔡司进行共同开发,显示阿斯麦对于下一代 EUV设备的必胜决心。巨头导入 EUV的进程不一,设备需求能延续 3年以上。全球半导体产业在进入 7nm制程世代之后,可望是台积电、三星电子、格罗方德三强对决局面。 2012年,三星和台积电分别向阿斯麦注资 5亿和 15亿欧元,以加强与公司的战略合作;

  根据调研机构 Anandtech所汇集的各家路线图,台积电是最快到达 7nm工艺制程的厂商。台积电对外宣布,针对高速运算市场,量身打造人工智能与数据分析专用的平台,预估 2018年 H1就具备 7nm量产能力;紧接着在 2019年的第二代 7nm,导入阿斯麦的 EUV设备,并有望同年试产 5nm制程产品。其他厂家方面,三星则决定在 2018年第一代的 7nm就直接让 EUV技术上线;格罗方德则承袭IBM技术自行研发 7纳米,同样预计 2018年下半年量产,但第一代是使用DUV,而导入 EUV需要到 2019年。 Intel则因成本考虑,要到 2021年才开始用 7nm工艺接替 10nm制程。

一文看懂asml光刻机事业道理及根基构制

  公司技术优势明显,保持行业领先。公司在 2013年首次推出极紫外光设备 NXE 3300B,

  但是精度与效率不具备 10nm以下制程的生产效益;直到 2016年后的 3400B,光学与机电系统的技术有所突破,极紫外光源的波长缩短至 13nm,每小时处理晶圆 125片,或每天可1500片;连续 4周的平均生产良率可达 80%,兼具高生产率与高精度。随着芯片尺寸不断缩小, EUV设备未形成行业刚需,目前全球一线的逻辑晶圆与存储晶圆厂商,均采购阿斯麦 TWINSCAN机型,其中英特尔、三星、台积电三大巨头,纷纷入股阿斯麦,以谋求其高端光刻设备共同开发与优先采购权。

一文看懂asml光刻机事业道理及根基构制

  由于公司的浸没式 EUV光刻设备,能帮助客户实行量产 7nm和 5nm的晶圆制程,并达到 2.5纳米的迭对精度,未来出货量可观。 2017年上半年,公司售出 2台 EUV设备, Q3单季度倍增到 4台;预计 Q4还有 6台交付,带来 3亿欧元单季收入,计划 2018与 19年均可出售超过 20台。

一文看懂asml光刻机事业道理及根基构制

  整体而言,公司在 2017Q3单季营收 18亿欧元,前三大产品线D NAND客户对于 KrF干式光刻系统的需求持续升高,目前相关设备的未出货订单已累积超过 20台,显示出公司由中端到高端的产品均居市场领导地位。

一文看懂asml光刻机事业道理及根基构制

  声明:本文由入驻电子说专栏的作者撰写或者网上转载,观点仅代表作者本人,不代表电子发烧友网立场。如有侵权或者其他问题,请联系举报。侵权投诉

  ASML表示逻辑运算芯片的强劲需求将延续到2020年 存储器市场整体也逐渐复苏

光学

上一篇:

下一篇:没有了